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Beam Steering of Electrically Segmented Piezo-Ceramic

Ultrasonic Transducers Using Normal Mode Coupling

by

Hossein Eslambolchi
Doctor of Philosophy in Electrical Engineering
(Applied Physics)
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Professor Victor C. Anderson, Chairman

It is well known that normal mode coupling in large
diameter piezoelectric plates causes serious difficulties when
;j attempting to operate over wide frequency bands. As a
< consequence transducers are commonly constructed as a mosaic of
elemental resonators, each of which has a predominant single
5 mode of mechanical oscillatfon at the frequency of interest.

Such transducer arrays may be electrically steered to angles

other than normal by applying different phases of driving
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i& voltages to different elements. A continuous plate can also be
52 used to steer a radiated beam using normal mode coupling in a

g narrow band system. The technique is to adjust the frequency of
-;; the driving voltage to match the travelling wave velocity of the
;} normal mode which possesses the desired spatial phase

: relationship across the face of the plate. If the electrodes of
; a continuous piezoelectric plate are segmented so that regions
S; of the plate can be driven with different phases, adjacent

«

normal modes corresponding to a sine-cosine spatial phasing can

PN
AL

be preferentially excited to generate a travelling wave. A true

travelling wave will suppress the strong mirror lobe that would

s

exist if a standing wave were excited. The velocity of the wave
will be frequency dependent and the wave number can be
controlled to generate a steered radiated beam.

In this research the theory of normal mode steering will
be developed, the dispersion curve will be derived so the
travelling wave velocities can be evaluated, and the effect of
the mirror lobe due to the reflection from the edge boundary
will be analyzed. Finally, the theory will then be verified by
measurements on an experimental normal mode transducer which

. will be compared with a companion staved or mechanically

segmented transducer.
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1. Statement of the Problem

This thesis deals with electrically steering a
piezoelectric plate transducer to generate an acoustic beam at
angles other than normal to the plate while still retaining the
high coupling associated with normal mode operation.

The theoretical analysis that treates the dispersion
relation, reflections at the boundary, and grating lobe structure

will be presented.

2, Introduction

In vibrating piezoelectric solids, many effects cause
small changes in the natural frequency of the plate, corresponding
to different vibrational modes with different amplitudes. These
effects include such things as material stiffness, water loading
of the surface, stiffening of the surface (due to the presence of
a thin surface conducting sheet), the biassing stress, strains,
and electric fields which may be applied.

When generating an acoustic beam at angles other than

normal to the transducer plate, we are applying different phases

of driving voltage to different sections of the transducer. This
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phase difference causes a small change in the resonant frequency
of the plate which corresponds to a different mode of mechanical
oscillation.

Since the plate is driven close to its natural frequency,
different modes with different amplitudes will be excited. But
since we are applying different phases across the plate as we
steer the beam electrically from normal, we are particularly
looking for modes which have the same spatial phase distribution
as the ones which we are applying. Therefore the problem is to
find frequencies close to the plate's natural frequency which have
the same spatial distribution., Finally, by matching these with
the frequency of the driving voltage, the maximum response can be
achieved. The advantage of this continuous plate with normal mode
operation is that the grating lobe would be suppressed. By
contrast, if one applies the phase distribution to a discrete
segmented plate which has no normal mode coupling, the grating

lobe will pose a major problem if the segments are wider than one-

half wavelength,
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3: 3. Background

F‘u.'

F: Wave propagation in a homogeneous infinite piezoelectric
|' plate has been the subject of extensive investigation over the
"

!

years. Rayleigh [1] gave the solution for an isotropic elastic
; plate and Ekstein [2] gave the solution for a particular
li anisotropic elastic plate. Since then several authors have

calculated the roots of Rayleigh [3-7] and Ekstein [8-10]

-
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Pl

transcendental frequency equations in order to determine the
resulting dispersion relations and solve high and low frequency

vibrational problems. These solutions and calculations are

applicable to purely elastic plates and to plates which obey the

linear piezoelectric equations but which have low electro-

v . -
' e e T
. T .
LR PP

mechanical coupling factors. However, certain polarized

piezoelectric plates such as PZT-4, PZT-5 and PZT-7 which chey the

e e R R e ad!
PN

linear piezoelectric equations have high electromechanical

.l

coupling factors; consequently the aforementioned solutions are

inadequate to describe wave propagation in these plates.

LA AL AL

ety

Tiersten [11] solved the problem of wave propagation in an

[T

infinite piezoelectric plate belonging to the crystallographic

class situated between shorted electrodes for two special

orientations of the sixfold axis. The solution was derived using




the linear piezoelectric equations. He showed that for a given
frequency and wave number in the propagation direction there are
three independent solutions which are coupled at the traction-free
boundaries of the plate. The dispersion curve was derived from
the resulting transcendental equation. Tiersten's solution to
derivation of the dispersion curve was focused on the unforced
mechanical vibration where there is no electrical drive on the
sections of the plate. This results in no electrical stress in
the plate.

In later years Tiersten [12] solved the problem of the
wave propagation by assuming that the plate is driven electrically
with constant electric field in the plate and traction-free
boundaries. The dispersion curve derived from his analysis is not
too much different from the undriven plate. His electrical drive
consisted of uniform amplitude and no phase distribution in the
form of a constant electric field. He investigated different
i modes of wave propagation to determine which modes can be excited
; under electrical stress. Both symmetric and antisymmetric waves

were analyzed. The different propagational modes contribute

different spatial phase distributions in the plate with different

acoustical amplitude distributions.

O ,‘j
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Bleustein [13] approached the problem of wave propagation
in an infinite plate by assuming that there are perfectly thin

electrodes coated on the surface of the plate and that the

electrodes are short circuited. His solution results in zero
potential on the two surfaces of the plate -- a boundary condition
which is different from that which has been investigated in this
thesis.

This thesis evaluates the dispersion curve for an infinite

piezoelectric plate by assuming pressure release boundaries and a

v
[

w.
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-
R
Ko
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)Ty
Vo
e

constant voltage but different phases to different sections of the

S rnOh
rd

1 .
P ]
P v

plate. The theory will be analyzed in Chapter Il and verified

4

against the experimental data in Chapter III.

- 4. Approach

Much research has been devoted to generating an acoustic
i: beam at angles other than normal to the transducer plate using
o piezoelectric transducers. Up until now, transducers have usually

been segmented by dicing the plate into elemental resonators which

N have been both electrically and acoustically isolated. Figure 1
% shows such a segmented piezoelectric plate.
¥

--------------------------------------
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For a segmented plate the simple dispersion equation can

be written as

where Kp = wave number (discrete elemental resonator) and K,, Ky ,

and K, are wave numbers along x, y, 2z, respectively. The equation |

b can be rewritten as:

- ) = (@ (@ + = (1)

where L, D, and T are length, width, and thickness of an elemental
resonator, n, m, and p are integers (0,1,2,...), and Cg is the
velocity in the plate. Since the plate is resonant in its
fundamental mode of mechanical oscillation in the thickness

direction, p=1, m=n=0. For such a resonator, there exists not

only this fundamental mode of mechanical oscillation but also
other higher order modes {(n, m > 0) which are overtones in the
frequency response of the plate. An array of these resonators can

be electrically steered to angles other than normal by driving the

individual elements at the main natural frequency, but applying

different phases to the resonators,. ’




..................

An alternative approach that will be demonstrated here is
to use a continuous plate to electrically steer a beam to angles
other than normal by applying different phases of driving voltage
to different electrodes. If the electrodes of a piezoelectric
plate are segmented such that sections of the plate can be driven
with different phases, then certain normal modes can be
deliberately excited. This can be achieved in a continuous plate
where there is normal mode coupling.

For a continuous plate the dispersion equation of (1) also
applies, only the dimension differs. The dimensions of a
continuous plate (Figure 2) are large with respect to a segmented
discrete type; as a consequence there will be normal modes which
are close to the natural mode of the plate. Because of the
coupling in the plate, there exist normal modes with different
amplitude and spatial phase distributions in the plate. 1In our
application the plate is driven close to its natural resonant
frequency, and different modes with different amplitudes will be
excited. We will particularly look for modes which have the same
spatial phase distribution as that of the impressed electric
field. When this match is achieved, we will realize a maximum

response on the beam pattern of the transducers.

Laad et 2
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When the frequency of the travelling wave which possesses
the desired spatial phase distribution is found, the reflections
from the edge boundary will create a mirror lobe, The creation of
the mirror lobe is due to the standing wave that will be formed.
The magnitude of the ratio of the travelling wave can be enhanced
by applying suitable dissipative damping coupled to the edges of
the plate to reduce the reflections that cause a standing wave to
be formed.

An active approach which has been used in this thesis is
to reduce the reflection of the edge boundary by driving the last
few segments out of phase and forcing a reduction in the magnitude
of the travelling wave by the time it reaches the boundary.

The approach for a continuous plate also circumvents the
necessity of dicing the fragile ceramic disk, and allows one

merely to use segmented electrodes,

5. Grating Lobe in Discrete and Continuous Plates

Discrete plates have disadvantages due to the grating

lobe, which is an aliasing problem in comparison to the continuous

plate. In a discrete plate the bar moves as a whole. The
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‘;

assumption we could make here is that the displacement across the
segment is uniform, so that what we have is a distribution that is
spatially quantized, with an accompanying high spatial harmonic
content caused by the discontinuities between segments. Because
of the coupling in the plate, spatial frequency content of the
continuous plate is different in that there are no
discontinuities., This reduces the high frequency component and
lowers the grating lobe amplitude considerably. The analysis for

the grating lobe will be discussed in Chapter II,

6. Phase Quantization

Phase quantization has been used in this investigation in
order to generate electrical phase distribution. This
quantization was achieved by dividing the phase uniformly between
zero and 2n, Two, three, and four bit quantization was used in
order to evaluate the effect of the quantization on the beam-
pattern. This quantization technique will be discussed in

Chapter III.
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2.0 INTRODUCTION

The small vibrations of piezoelectric bodies are governed
by the equation of the linear theory of piezoelectricity. In
piezoelectricity the quasistatic electric field is coupled to the
dynamic mechanical motion. To be more specific, the equations of
linear elasticity are coupled to the charge equations of
electrostatics by means of piezoelectric constants.

Although there are a reasonable number of papers on
piezoelectricity currently available [1-2], they have all been
investigations from different practical points of view, and use
the theory sporadically, without a systematic development. A1l
the existing papers discuss the piezoelectric vibrations of bodies
only in the simplest cases of the thickness vibrations and the
low-frequency extensional and flexural vibrations of thin rods.
In addition, considerations of large piezoelectric coupling are
absent in papers on this subject except for discussions of the

simplest case of elementary thickness vibrations [3-5].

2.1 Dispersion Curve

In this paper, the rigorous solution of the problem of

wave propagation in an infinite piezoelectric plate is derived




{'_.-. - -~ = N TN T NT e AT (PNl e LR /A R Ml S S A O e Sy St DA S C A i Sttt Al 3 -~
".

e 18

r,

L

b

bt

b

,

;; from the linear piezoelectric equations. The surfaces of the

s

:}: plate are pressure release and completely coated with segmented
P' electrodes. No restriction on the relative magnitude of the

. elastic, piezoelectric, or dielectric constants is imposed. The

|

: solution will be valid for materials with high electromechanica)

:

.' coupling factors. We will consider the piezoelectric plate

, polarized in the thickness direction. A transcendental frequency
. equation is derived, the roots of which determine the modes of

it propagation and the dispersion relations in an unbounded plate.
. Figure 1 shows a piezoelectric plate which has been

3

. segmented and isolated electrically. A rectangular Cartesian

= coordinate system Xj, 1=1,..3 is chosen with x3 = th defining the
o faces of the plate which is poled in the thickness direction. An
;{ index preceded by a comma denotes differentiation with respect to

a space coordinate.
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2.2 General Egquations
The system of equations governing the behavior of this
plate consists of the following.
The stress equations of motion [6]:
T.. . = pu.
ij,i = P ()
The charge equation of electrostatics:
Di,i =0 (2)
The strain-mechanical displacement relations:
1
Sig =7 (uy o * Uy, k) (3)
i The electric-field potentia) relations:
-
. EK = 'q")K (4)
. The linear, piezoelectric relations [7-8):
b,*
Tis ™ Cijke Ske ™ ®kij Bk (5.1)
- Dy = eixe Ske * ik (5.2)
where, in the above, Tij’ uj, Di’ SKn’ EK are the components of ;
stress, mechanical displacement, electric displacement, strain,
e e S T el Sl T T e e S S e e e
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and electric field, respectively; p and ¢ are the mass density and
the electric potential, respectively; Cinl, eKij’ €y are the
elastic, piezoelectric, and dielectric constants, respectively.
The face of the infinite plate is immersed in castor oil
in a surrounding circular package and tested in water. Since the
impedence of the water is much smaller than the impedance of the
ceramic, we can ignore the medium loading and basically assume
that we have a pressure release boundary. This assumption is not
as valid at the resonant frequency of an entitled normal mode.
The faces of the infinite plate are coated with segmented
electrodes so it can be steered electrically. Since the
electrodes are assumed to be infinitesimally thin, we can ignore

all possible mechanical effects.

—
]

33 0 at x5 = th (6)

i(Kxy; Sin 8_ - wt)
v = RE[e = ! 0 ] at xg=h (7)

where 60 is the steering angle, w is the frequency of the driving
distribution, t is the time, and ¢ is the driving potential.

For the plate which has been used in this thesis, lead-

Zirconate, the piezoelectric stress matrix can be written as

Ve
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e, = 0 0 ¢ 0 0 O (8a)

e31 states that the plate is driven along its thickness direction
and the resulting strain is along x; direction. Since the
material property is the same along the xy,x, direction but is
different along the x3 direction, e33 would be different from both
e3; and e3p.

The dielectric matrix can be written as

€11 0 0
e'ij = 0 ‘11 0 (8b)
0 0 533

where again, because of material symmetry along

X15%2s €77 and €,, are the same and ey, is different.

The elastic constants are:

-

b
o
T

..............
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23
Ch G2 C3 O g 0
2 th G5 O X 0
Coa Ci3 G35 G353 0 0 (8¢)
0o 0 0 ¢, 0 0
0 0 0 0 Chy O
0 0 0 0 0 Cg

where p or q = 1,2,3,4,5,6 may be replaced by 11,22,33,23 or
32,31,0r 13,12 or 21, respectively.

Now within the plate we could write the stress equation of

motion as follows:

8T 8T 6T

and by

pUy =

puz

QU3

9.0

11 12 13
+ +
GXI 6x2 6x3
6T21 6T22 6T23
Sx + 8x + 8x
1 2 3
6T31 X 6T32 . 6T33
3&1 6x2 SX3

0

Y

Maxwell's electrostatic relation:

3
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(9)

(10)
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8 8 ) .

§
where v = (
le ’ 6x2’ 6x3

(11)

In a piezoelectric plate the electric flux density can be

written as:

D =

§ €ikg >

ke ¥ Sik Bk (12)

Upon substitution of (8), Eq. (5) becomes:

Tin = C11 511 * G 590 * Cy3 533 - e By

Tog = C12 511 * 01 522 * Gz 533 ~ 81 By

Ta3 = Cy3 591 * i3 522 * €33 333 (13)
T.. = C,. S

23 44 723

........
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s e
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T = SVt G2 Y,2 Lz Yas t eanY,s

Too = Ca U1 v 0 Y24 Ci3 Y33 % 83 V3

Tag = Ci3¥p1 * Cy3 Y50 * Ca3 V33 * €339 3

+ U

23 aq (U35 * Vs 3)

T = C U + U

13 as (U3,1 * Yy 3)

66 -~ Ce6(Y2,1 * V1,2

and Eq. (12) becomes

NN A A AN — v v,
Y ) RO AR
. ‘..‘ LI .‘.‘-‘.'-'0'.4 v-Al‘.' - L

Y
§
—

11 71

e

h "Iq -""."_,t'. ' -.'_f.‘l ':' -

D, = ~enY,2

Dy = ey Upp v 83 Y0 * 833 ly3 - f33 ¥ 3

TG e NSRS

0 by ENLR

Now by substitution of (3), (4) into (13), Eq. (14) results:

(14)

(15)
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Substituting Eqs. (14), (15) into the equations of motion and

electrostatic relations of (2), Eq. (17) is achieved:

C., U +C. U

nYunthelatt

13 Y3,31 * %31 Y31 * Ce6 Uzi12

+c. _U +C U

66 1,22 " Caa Y313 % C

ae V1,33 % M

i c

; 66 V2,11 * C66 V1,21 * C12 Y112 * Cu1 V2,02 Y Ci3 Vs32 t ear V32
}
*Caq V3,23 * CaaYp33 = Py
(16)
Cag Y3,11 * Caa V1,31 * Caa V3,22 * Cas Y2,32 * C13 Y113
i3 Vp a3 ¥ C33 U333 % 833 ¥ 33 = oug
and

PPETTEE IS TN S
~
-

........................




11 Y11 " €11 Y22t @3 Yy 13t e3y Vg o3 Y €33 U333 - €33 ¥ 33 = 0

(17)
- and in our new notation, the boundary condition becomes:
i T33 = T32 = T31 = 0 at x5 = h (18)

‘T v
ST

Since the plate is driven along its length (x; direction)
we could assume that the mechanical displacement is constant along
the xo direction.

Since the plate is forced electrically into vibration, the

total potential in the plate can be written as:

= tut
0(xs x3t) = [oylxpoxg) + v (xp,xq)] e (19a)
and Wy = 0 at Xy = th (19b)

where ¥4 is the homogeneous steady state solution and wps is the

particular solution due to the applied potential between the two

surfaces of the plate.
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Now we need to solve the homogeneous solution where
‘VH (Xl,X3) =0 at X3 +h.
PUP = €y Yy yp * €13 U313 ¢ eyt 3 ez 13ty 33)
PU3 = CgaqU3 11 * CaqVp 3 * C13V1,13 * C33V3,33 * e33¥y, 33 (20)
< f11¥R,11 T 311,13 * €33¥3,33  €33¥4,33 © O
Let's consider a solution of (20) as:
uy = K1 cost3 sin(Lx1 - wt)
ug = K3 sian3cos(Lx1 - wt) (21)
¥y =8B sian3 cos(Lx1 - wt)
where KI,K3,B are constants and P,L are wave number along
thickness and propagation direction, respectively. Notice the
form of Eq. (21) which is a standing wave along the thickness
direction and a travelling wave along the propagation direction.
Eq. (21) satisfies (20) if the following holds:
e T e e N T T e T N e e e e e e




29

(an2 + cgqP? - pu?) Ky + (e13 + Cqq) LPKy + 5 1LpB = O

k)|

(c44 + c13) LPK1 + (c44L2 + c33P2 - pwz)K3 + e33P28 =0 (22)

2 2 AN
This system of linear, homogeneous equations in Kl’ K3, B

yields nontrivial solutions when the determinant of the

coefficients of Kl,K3,B vanishes; i.e., when

Eq. (23) is quadratic in w2

given w and a propagation wavenumber L, there are three thickness
wavenumbers (P(1), P(2) p(3)), each of which yields an

independent solutfon and amplitude ratios when substituted in

(22). The amplitude ratios will be designated by

2 2 2
2. 2 2 2 )
(cqq*cy3)LP (Cqql *tcq3P -pu) e3P =0 (23)
2 2 2

, but cubic in L2,P2. Therefore, for a
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K@ 1y w0 (1) 00 (242)
where
8, (1) [(c11L2+c44P(i)2-pw2) * (c44L2+c33P(‘)2-pu?)] - [e33P(i)2*e33P(i)2]
B\ - [931LP(1)*(°44L2*C33P(i)2'°”2)] - [‘C44*°13)Lp(i)*933p(i)2]
8,1 = [eg,P(i)7%ey lPl1)] o [(c44+c13)LP(i)*(611L2+e33P(i)2)]

Eq. (23) clearly shows that the piezoelectric constants
eip couple the quasistatic electric solution of (17) to the
dynamic mechanical motion of (20). These two solutions uncouple

only if all the eip vanish. This coupling of a quasistatic

phenomenon to a dynamic phenomenon states that a given frequency

-
[y
1

and propagation wavenumber result in three thickness wavenumbers.

— v -
5
’

One solution of the differential equation is insufficient
to satisfy the boundary conditions; all three solutions are

required. Hence, we must take:
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uy = sin(lx, - wt) ,> ali)g (1)eospli)y
1 1 i 1 3

3
ug = cos(lx, - ut) 5;1 alidg, (1) sinp(‘)x3 (25)

3 . . .
v = cos(lx, - ut) > A(1)82(1) sinP(‘)x3
i=1
as solutions of the problem.
Now we need also to consider the boundary condition in
order to solve the problem completely. Substituting from (25)
into the boundary conditions (18), (19b), and using the required

relations in (14), (15), one obtains:

33 T C13¥y,) Y Cag¥z 3 teav 3= 0

13 © «:44(u3’1 + u1.3) 0 at x3 = th (26)

]
(=)

23 = Caalug p Y Vg 3) =

=
;

LA
\" ‘. ‘“ ‘-

and from Eq. (26), Eq. (27) is achieved:
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3 . . .
ali) T1(1) sinplih = 0
1:
() 1 (1) . pli)
A T2 cosP* 'h =0 (27)
1=1
5~ Al (1) ginpliy = g
“ 32 S1n =
where
(28)
L e e ) L gy 8,0 p) 4 e (D) p00)

Eq. (27) consists of a system of linear, homogeneous algebraic
equations in the A(i). This system yields a non-trivial solution

when the determinant of the coefficients of the A(i) vanishes;

i.e., when

g 1, Msinp 7, Psine (2 1,3sinp 3

g D(Lyw) = | T, Deosp M 1,2 cosp (2 1,3c0sp 3 | = 0
g Y I I C IO

é (29)
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Eq. (29) is a transcendental equation, the roots of which
enable the determination of the dispersion relation for this
piezoelectric plate. Eq. (29) contains an infinite number of
roots h,, each of which determines a point on the dispersion
spectrum and yields amplitude ratios (A(l) . Al2) : A(3)) when
substituted in (27).

Now for the purpose of calculating the dispersion curve,
it is convenient to write the pertinent equations involved in the
calculation in terms of certain dimensionless quantities. The

pertinent equations are (22), (23), (27), (28), and (29). Let's

assume:
_ 2Lh 2Ph
nE ¢t
C e. €
Cpq = Eg ' €ip * L /2 £ = (30)
q 44 (cqqe33) 33
1/2 1/2
(of €
- ot 44 33
Q== 0 = (z5) () =8 (z:;;)
[1Y]

Now the pertinent equations become
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(Eyn + Eqqol = DKy 4 (G5 + Cyy) arky + &y na B = 0

- - - 2., - 2 2 - 2
(c44+c13) anK1+(c44n + 330 -Q)K3+e33a B =0

Gy na k) + 533a2K3 - (511n2 + 53302) B =0 (31)
and
- 2 - 2 2 - - .
€y "+ caqe” - 27) (Cy3 + Cqy) na ey an
.. - 2. - 2 2 .2
. -2 2 2
€3y an e33 @ - (e + eg3a)
(32)
S () 1) oz ()
2 AT singattl = 0

i=1

L]
o

3 iy - g .
S alf) Tz(‘) cos -;-a(‘) (33)

i=1

w
]
o

S a(i) 52“) sin%—a“)
1

i
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where
;l(i) = &y (33(1) "+ Bl(i) a(i))
;2<i) - gy 8,0 gy 5,01 G10)

and finally, from the determinant of (33)

K1) cot §alt) 4 x(2) cor T a(®) 4 x(3)

where

1 - (1) (7 (3 2 - (2
x(1) . Tz( ) (T1( ) 82( ) _ Tl( )

W

3
2( )

(@) L7 (§ )5 7))

3 T3 (2) Q1 (1) D (2
x(3) - TZ( ) (T1( ) 82( ) . Tl( ) 82( ))

The relations between @ and n, (i.e., the dispersion

relation), can now be evaluated.

roots of the transcendental equation have been suggested by

s e
Py LA

(i) )

+ 633 §2 a

cot %-u(3) =0

(34)

(35)

(36)

Several methods of obtaining the
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several authors [9-10]. But a very simple, straightforward
procedure for calculating the dispersion relation is by selecting
a value of n. The further choice of @ permits the calculation of
the a(i) from (32) and the Ej(i) from (31) so that the ;1(1)
and ;z(i) may be computed from (34). The X(i) may now be
determined from (36). If the values thus determined satisfy
Eq. (35), the selected values of n and @ constitute a point on the
dispersion curve. If Eq. (35) is not satisfied, we repeat the
calculation for different values of n and Q until Eq. (35) is
satisfied and a root has been obtained. When a sufficient number
of values of n and @ satisfying Eq. (35) has been obtained, the
dispersion curve can be plotted.

The starting point on the dispersion point is critical in
determination of the dispersion curve. The solution at an
infinite wavelength can be obtained simply by setting L = 0.

However, the procedure is not quite as straightforward. When L is

" set to 0, Eqs. (22) and (23) becomes, respectively,
- 2

> (C44P - pu:z) K1 = 0
2 2 2
2
and
v
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(CqqP-0i?) 0 0
0 Cy3P -0 0 = 0 (38)
0 e 43P - e33P2
From Eq. (38), the three P(1) are given by
(D, P p0)y = [u (orc, )2, 0, wlerigy)?] (39)

- - 2 .
where €33 = €33 * €33 /€33 « The substitution of the three p(i)

successively into the algebraic equation of (37) yields

(8,1, 6,0, 5,01y,

Eq. (27) now becomes:

all) ¢4 p(1) iy =

A(Z)e33P(z) cosP(Z)h + A(3)(c33+e§3/e33)P(3) cosp®h - o (40)

i
o

A2 sinp @ 4+ aB) (e ey,) sine

T N e % "% e " % e e % e ‘s m - .
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The last two equations (39,40) show that as p(2) 0,
(2)

c + » since sinP(3)h and cosP(3)h cannot equal zero

simultaneously. However, A(2) and p(2) always occur as an
indeterminate product. Hence, Eq. (40) may be written as:

A(l) c44P(1) sinP(l)h = 0

K ey + A% E43P) cosph = o (41)

Kh + A(3)(e33/e33) sint(3h - o

where K = A(Z)P(Z).

Eq. (40) yields a nontrivial solution when

c44P(1)sinP(1)h 0 0
- 5(3) (3) -
- 0 €33 c33P cosP'"'h |= 0 (42)
. . 3
- holds.

Eq. (42) yields two transcendental equations, each of which

determines a set of roots. The two equations may be written as:

- -t
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sinpMh =0, tanrGp = P(3)h/Kt2 (43)
where K, = (e 2/5 Cqq)
¢ = (e337/e33 ¢33

Thus we see that the first transcendental equation yields
thickness frequencies and modes which are identical with the
purely elastic modes. We also see that the second transcendental
equation yields thickness frequencies and modes with piezoelectric
coupling. Thus for this piezoelectric plate the wavelengths of
overtone resonances are not integral fractions of the fundamental;
as a consequence the resonant frequencies of overtone modes are
not integral multiples of the fundamental. The deviation from the
integral multiple relationship depends on the electromechanical
coupling factor K¢ only.

The analytical approach that has just been described here

was done on the piezoelectric plate (lead-zirconate) and the

dispersion curve was evaluated. Figure 2 shows the dispersion

L)

- o -
(SIS MR

curve for such a plate. The abscissa is the normalized
(dimensionless) wavenumber and the ordinate is the normalized

(dimensionless) frequency.
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n 2.3 Electrical Steering

-" -";.' ,

The evaluation of the dispersion curve (frequency vs.

e
1]

wavenumber) can now be matched to the wavenumber of the driving
distribution so the beam can be steered electrically.

- By Snell's Law:

; Ko sme0 = Kp(w) (44)

:\ _ W i s 1

r where Ko = C; » C, is the speed of sound in the water, « is the

': angular frequency, and eo is the steering angle. By solving (44)

j: the corresponding frequency vs. the steering angle for such a

- plate c.n now be calculated from

-

~

% K, sing - Ky () = 0 (45)

-,

- Figure 3 shows the theoretical curve for such a plate

. which has been polarized along its thickness direction. The shape

% of the curve is similar to the dispersion curve of Figure 2. The
asbscissa is the steering angle in degrees and the ordinate, the

i frequency in KHZ.
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FIG.3
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2.4 Grating Lobe in a Discrete and Continuous Plate

For an electrically segmented and acoustically isolated
plate the acoustic amplitude distribution of the plate is uniform
since the segments move as a whole. the assumption we could make
here is that what we have is a spatially quantized amplitude
distribution, with accompanying spatial harmonic content caused by
the discontinuities between segments.

Figure 4 shows a discrete linear, equally spaced array in

which the beam pattern function can be derived as:
v o= Rm cos{ut + mu) (46)
m
where Rm is the individual voltage of each array:
v - R ju imu e(n-l)iu]

where u = KD sin® (47)

<D
n

physical angle

o
i

spacing between the elements

e
1}

wavenumber
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Multiplying (47) by e’V and subtracting from (47) results in:

inu :
_ (e -1y _ sin(nu/2
v = (e1u 1 ) = sinlu72; (48a)

Now the beam pattern V must be multiplied by the directivity of

each individual element. That is,

vV = s::ﬁng/zg * sinéU/Z) (48b)

where the second term in (48) is the directivity of each elements.

Here if the beam is steered off normal [11-14]

u = KD(sin® - sineo) (48c)

For the discrete segmented plate, if the path difference between

the segments reaches 2n, the pattern repeats itself; that is,
KD(sin6 - sineo) = 2nm n = (0,1,2,...) (48d)
so there exists some spatial harmonic content of the resonant

wavenumber that gives rise to the grating lobe in a discrete

plate.

.................
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For the continuous plate, the segments' motion is
different than the one for an acoustically isolated plate, since
there are no discontinuities in the acoustic amplitude
distribution because of the coupling in the continuous plate.
This amplitude distribution has a lower spatial harmonic content
which reduces the grating lobe considerably when the beam is
steered off normal. The plate in effect spatially filters the
high harmonic that is associated with the electric field.

This spatial filtering effect can now be derived
theoretically as a function of a normalized wavenumber in the
plate.

From (19)

olxppxget) = [9lepxg) + ps(rpng)] et

We have already solved the homogeneous solution of the
problem when the dispersion curve was derived. Now we need to
find the particular solution due to the applied electric field.
From the particular solution we obtain the acoustic amplitude

distribution as a function of the wavenumber in the plate for a

fixed frequency.
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Since the plate is driven externally with potential of
Eq. (7) at the faces of the plate, there will be a corresponding
stress and electric field due to the applied drive. Eq. (5.1) and
(5.2) can now be written as:
ij,i
(49a)

where Tij9 ujs D; are the components of stress, mechanical
displacement, and electric displacement, respectively. The
quantities D? represent the electrical term due to the applied
potential. The associated boundary conditions for a pressure
release boundary with zero-normal component of electric

displacement is given by:

n
Q

Ni(Tij)

(49b)

[
o

e
N, (D40, )

The previously derived homogeneous solution yielded the
functions (uT, ug, wm), which satisfy the eqution of motion (49a)

and boundary conditions (49b). Now, if we assume that the

T S [
P P R A Pt S . LIRS ) LR *
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i
k solution due to the applied field is (ul, Ug, ¥), these functions
& must also satisfy (49a).
L
| Now let's multiply (49a) by U? once and then by Uj and
" subtract and integrate over the volume:
i 2 m 2 _
I {/ [(T?J.’i +ou WT) Uy = (Tio o 4 pu ;) u';] dv = 0 (50)
Now by the divergence theorem:
2 2 m m m
- U. dV = T .U - T UL4D. T - D
(wh - w) jv o u';‘uJ d £ N1[T]JU’J" TS U0, ol'v] ds
(51)
Since the homogeneous solution yielded zero-normal component of
stress, mechanical displacement and electrical displacement at the
boundary, Eq. (51) can be rewritten as:
(W2 - w?) [ o™y, dv = [ N (0My) dS (52)
m J I it
v S
Now we can write
N e T e e e e e e T e T T T e e
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U= 2 —g——-g-g'“ N, (0Ty) dS (53)
m it
m (wm - w)
where
oM n

Eq. (53) shows that at w = @ the displacement function goes to
infinity, and this is usually the case for the driven plate if

there is no damping in the plate. Now the displacement and

{ potential function due to the applied field is required, so first *

we expand the solutions of the problem in Fourier sine and cosine

F series:

- v = g Un(x3) sin(Lnxl)

i n=1

% U, = '; Vn(x3) cos(Lnxl) (55)
- n=1

y wps = ngﬁ Bn(x3) cos(Lnxl)

where Uy, U3 are the displacements along xj, x3, res-

pectively, wps is the particular solution due to the applied

.._\‘.~.._- .
L N
¥

—Ra®
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electric fields, Un(x3), Vn(x3), Bn(x3) are acoustic amplitude
distributions in the plate, and L, are the discrete eigenvalues of
the wavenumber,

Substitution of (55) into the linear piezoelectric

equations of (5.1), (5.2) gives

KpU(Xg) + (Ky +Kp) Vog ¢ KByo + KV, 0y = 0 (56a)

LIV(Xg) = (L, +K,p) Uyq # Ly Vagg #L3Bugy = 0 (56b)
MB(xy) - Ky Upy + LoV, 00 +MB,o0 = 0 (56¢)

where

K--C'LZK--C'L K, = e,.L_ K, = <L, L K, = C
1 - ~11tn 27 130 37 B3t Rg T Lagtn Kg T Ly

- 2 - =
Ly = Lyt Ly =05 Ly = €33
Mp= Oyl My = =g

(57)
The sets of equations in (55) constitute the solution for

the forced vibration problem considered here,

S il M

50




Now multiply (56b) by K3 and (56c) by (Kp+Ks) and add:
X X X

2 3 4

Vigz = (F)V + () Bugg - () B (58)
1 1 1

where

X1 = L3 (K2 + K4) - K3L2

o =Ky by

Xy = K3 L3 - MZ(KZ + K4)

Xy = My (K2 + K4) (59)

Now taking the

coordinate and

derivative of the (56a) with respect to the X3

multiplying it by (Ky+K4), and (56b) by Ky, and

adding:
K1 U,1 + (K2 + K4) V,33 + K3B,33 + K5 U,333 0
L1V - (K2 + K4) U,3 + L2 V,33 + L3 B,33 = 0
R e e e e T T e i A




b,
V.
L .
L:
g
i
o
E

which results in

V,33Y1 + VY2 + B,33 Y3 + U,333Y4 = 0 (60)
where

Y1 = (K2 + K4)2 + K1 L2

Y2 = L1 K1

Y3 = Ky (Kp +Kg) + K Ly

Y4 = K5 (K2 + Kd) (61)

Also from (56c), let's take the double derivative with respect to

X3 coordinate:

M1 L3 M2

% B33 v v Vaa333 t o Beasag (62)

u,
333 Ky 3 3

Substitution back into the equation of (60):

52




.................

53

L M
3 1
V'3333(R§) + Vyg3¥y + WYy + B,ga(Vg # '4‘?;))
Mo
+ Ba3333 (Y4('K'3’)) = 0 (63)

Now let's take the double derivative of (58) and substitute back

into (58):
X X oX X X 5X X, 2
_ X3 23 *s 2%4 X2
V'3333‘x13'3333*( 7 -5 ) Byt () B+ () v (64)
X1 1 X1
By substituting (64) into (63), Egq. (65) results:
L,x M X, X X X
373 2 273 4 3 2
+ —) B, [ -—+ = (K, +K,) + KL,)
K3x1 K3 3333 Xq X; Xy 2 4 1-2
2 XXy Xy 2
* (Kg(Kp + Kg) * Kpbgd) Bugg + =7 - o (Kt Kg)™ + KyLp)) 8
1
Xy 2 Xy 2
FIED -x (K X7+ KL) H LTV = 0 (65)

in which V can now be defined as a function of B:
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30 PMAOAAOSNG 2 RUEEIUR PR,

3 Z2 23
v = (-Z—) 8’3333 + (Z_) B:33 + (i") B (66)
4 4 4
where
by M
5, T x e
311 3
. X, X X X
N _ 273 4 73 2
N 22 % 7 Tw tw (K KT KL,)  (Kglky ¢ Kg) 4 KyLy)
1 1
& X,X, X
. _ 7274 4 2
N X1
i; =f§.((|( +K)2+KL)-KL (-x—z)z) (67)
o Z4 g o2 e 1-2 17

A M

Now by substituting (66) back into (58):

Man(VI)(X3) + MZBn(IV)(x3) + M3Bn(ll)(x3) + M4Bn(x3) =0 (68)

where

(leyghpttpdveg b cag)[(egyl meqg(cqgl 1 Vega(c ql - )+eq L caq)]

'(elen)2 Lﬁ[(‘"‘lej’3 ;

" c LY - ((EyL )P - &8 Eaa)]
n 11%n 13" n""n C11%n €33

MO S LA

1

-

SN, OGNNSR
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e’L3(+éL+E(EL-L))
ntal* ete " epleagtn “t)) 2
- - - 11°n ‘*"713"n " "n
: (cyaty + L) - e3lCas
: b [l # Eaa(Eral =L )] * (gt - L)% = cyyticqs)
. 31°n 7 €33'°C13%h " tn 13'n ~tn! T C11tnf33
- - - 2 - 3 ‘1
- gL, (€3l - Ly) - Eptp)) - e31Ln[—e31Ln *
e b B T L e Ml L L
- T =
: (=Cialy = Ly) - eqily €3 e3ln
- M. =
2 3 —3
2 -e L e, L
’ 3t [(('C13Ln"-n)z'CuL:Z\°33)'°11L:*( A
(cyatptty) * eqplpcas (c1atp*tn)-e3lacas
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- 5« -
+e31Ln e11(C13Ln+ Ln)

— - Eyy LGyt - Eqqtl Eag)
egglc gt fp) + eglcaq

-3 2
€31 Ln ]
(=cy3tpty) + €5yl Cqy
M =
’ L - 2. 2. - 8 €y Ly 2
— (€13 qL ) =E1qby C33)Cyylp-

- - - - 3y - .4
- (8gyL, veq3(Cyat L)) (Egy L) - EyyLp- |

€31 “n
(-€y3tptp)*estncas (=cygtptpltesty,

A 2
S T i i A | L A

- .3 - 2 - 24
(egLp) == . - (€43t )7L 6a3))]
(-CyalpLp)tegglicas  (Cygl H )-Cqyl Cag
M. =
4 ——3 —T
es; by 4 ®31 by ]

- 2 . .2 - . -
M(-€paby 1)) by E33) €Ly -

(-C13tptp)estocas (€3l -ty lesilicss
st 2 (Gl 4L (69)
11 n 13 ™n n

The solution to Eq. (55) will be the acoustic amplitude

distribution in the plate. the particular potential solution now
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must be matched at the boundary of the plate to complete the

s 2 2

I e

QRPN o

solution of the problem. Eq. (68) is a sixth-order ordinary
differential equation, which has six roots, but because of the
form of the solution only three roots need to be considered, since
the other three roots yield the same solution and need not be
considered.

Now let's take the solution of the form

YX3
B (x3) =Ee (70)

TTEF ST

Substitution in Eq. (68) results in:

R A

6 4 2

F MIY +M2'Y +M37 +M4 = 0 (71)
i Since only three roots need to be considered, this results in:

- 3 2

E Mly tMYE + My ¢ M, = 0 (72)
o

~

i The roots of (72) must now be introduced back into the equation of
N (70):

: 3 Y; X

| B (xg) = Eoe > (73)
: i=1

v

g

;

)

e T e el oty
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Also from (55)
® 3 Y. X
i”3
Vpg(Xqsx3) = > 3 Es e cos (L x,) (74)

n=1 i=l

which must also satisfy the driving potential at the face of the
plate (i.e., x3 = +h)

is(xl,h) = ng& Bn(h) cos(Lnxl) (75)
where L, now must be matched with the driving wavenumber (i.e.,

K = %L-sineo), where in the above €y is the speed of sound in
water,ww is the driving frequency, eo is the steering angle and
B,(h) is the amplitude of the wave at the surface evaluated from
(73).

To obtain the spatial filtering curve (i.e., acoustic

amplitude distribution versus normalized wavenumber), a particular
wavenumber corresponding to specific steering angle was chosen and
the operating frequency was set at the corresponding resonant

frequency. This results in the evaluation of the acoustic

RIRL oA AL NN LY

amplitude distribution from (75).
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The theoretical analysis that was just derived was
performed for the parameters of the piezoelectric material used in
this thesis for a fixed normalized frequency and 10° steering.
Figure 4 shows such a plot. The abscissa is the normalized
wavenumber and the ordinate is the normalized acoustic amplitude
distribution in the plate truncated to unity. It is clear that at
the normalized wavenumber of 10° steering, the acoustic amplitude
distribution goes to infinity. and as the wavenumber changes, the
amplitude decreases exponentially. This spatial filtering curve
is the main phenomenon in the continuous piezoelectric plate that
serves to reduce the grating lobe.

Since the phases to steer the beam in the continuous plate
have been quantized, the numerical analysis using fast Fourier
transform was performed to get the theoretical beam pattern for a
continuous plate. The beam pattern for a continuous piezoelectric

plate length of 2L can be written as:

| P : .
V(K',8) = | AK x151ne §1c(x) (76)
-L

where ¢(x) is the quantized phase necessary to steer the beam

electrically. The first term in the integral is the directivity
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pattern, K' is the wavenumber, xy is the distance (i.e., =L < Xy <
L) and 8 is the physical angle. Taking the inverse Fourier

transform of the second term in Eq. (76) gives;

L

D(K) = ]L BX [coslg(x)] - i sinlz(x)]] dx (717)

Now the spatial filtering function of Figure 4 must be multiplied

to obtain a new spatial distribution:
Y(K) = Z(K) D(K) (78)

where Z(K) is the spatial filtering curve defined numerically from

(75). Now by taking the inverse Fourier transform of (78), we

gbtain
Y(x) = [ &% yi) a (79)

and the beam pattern can now be evaluated by taking yet another

inverse Fourier transform by using Eq. (76):

5
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L syt N
VK',8) = J &K X1 STMB vy ux (80)
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Figure 5 shows the theoretical beam pattern for 2X spacing

where there is no spatial weighting function and the beam has been

steered to 10° with uniform amplitude shading. The first grating

lobe can be seen to be at about 27°. Figure 6 shows the same beam
? pattern identically except the spatial filtering function has been
g introduced. The grating lobe can be seen to be reduced

considerably. In contrast to the acoustically isolated and

electrically segmented plate the acoustic amplitude distribution
in the plate is uniform since the segments move as a whole, so
there is no spatial filtering effect in a discrete segmented

piezoelectric plate.
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CHAPTER I1I
EXPERIMENTAL ANALYSIS
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3.0 Introduction

In this chapter the theoretical analysis of Chapter II
will be verified against experimental data. The first part of
this chapter provides a description of the receiver-transmitter,
the physical condition in which the transducer was tested, the
experimental set-up, system design and the phasing scheme used to
steer the beam electrically over a certain aperture range.

In the second part of this chapter the experimental
measurements for the dispersion curve, the grating lobe, and the
mirror Tobe in the continuous plate and in the discrete plate when
applicable will be analyzed. The effect of two, three and four
bit quantization on side-lobe structure, the mirror lobe and
grating lobe will be compared against the lobes of a segmented

discrete type.

3.1 Receiver/Transmitter

In this part the receiver and transmitter properties, the

physical condition under which the transducer was tested, the

instrumentation system design to obtain the data, and tne phasing

scheme used to steer the beam electrically will be discussed.
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3.1.1 Transducer

Although the transducer used in this thesis to provide the
experimental measurement could be used both as a receiver and
transmitter, it was used as a transmitter only. The transducer
material used is piezoelectric ceramic (CHANNEL INDUSTRIES
5500). CHANNEL 5500 has a high sensitivity and good time
stability, The dimensions of the piezoelectric plate used in this
experiment are 2 x 2 x 0.24 inches. It is operated in its
thickness fundamental mode of mechanical oscillation and is also
polarized along its thickness direction.

The numerical values of elastic, piezoelectric, mass
density and dielectric constants obtained from CHANNEL INDUSTRIES
for lead zirconate (CHANNELL 5500) are:

1 12.1x101%  Newton/meter? o

11.1x10%0

c 7.75x10° kg/m3

C Newton/meter2

ell/eo 1730 Relative dielectric

33

constant, free

10

C44 = 2.11x10 Newton/meter2

e33/eo = 1700 Relative dielectric

constant, free
10

12
C13 = 7.52x1010 Newton/meter2

= 7.54x10!0  Newton/meter? ey = 15.8 Columb/m2

....................
...............................
..................

..................
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For CHANNEL type 5500 piezoelectic material the frequency
constant of the thickness mode is approximately 78 KHZ~-INCH.
Using this figure the resonant frequency of the continuous plate
was calculated to be approximately 325 KHZ. The actual maximum
response at zero degree steering was measured to be at 348 KHZ.

In order to permit the beam to be steered electrically,
the transducer was segmented by a diamond saw to isolate the thin
conducting sheet electrically. Twenty segments approximately 0,92
inches wide were cut., For the discrete type the segments were cut
deep enough to isolate the segments both acoustically and
electrically. Figure 1 shows the physical cross-section for such
a plate. The segments for the continuous plate were isolated
electrically by cutting only the thin conducting sheet with very
shallow depth, Figure 2 shows the cross-section for this plate.

Both transducers were set in polyvinyl circular
packages. The piezoceramic elements were mounted only at the top

and bottom edges of the plate, where the acoustical loading is so

minimal that it can be neglected. Figure 3 shows the cross-

section of the package which was used in this thesis. Since the

-

plate segments will be driven electrically the package was filled
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with castor oil. The main reason for choosing castor oil as an
insulating medium is that its acoustic impedance matches that of
the water.

Since the plate, which can have a wide variation in
electrical impedance, must be driven electrically over long wire
length, there could be additional phase shifts which could distort
the phasing scheme and could affect the beam pattern of the

system, especially the side-lobe structure. A solution to this

was to shunt the segments with a resistor which, in combination
with the 1.8 KOHM reactance of the ceramic (at resonance) yields a
characteristic impedance of approximately 100 OHM, matching the
characteristic impedance of the twisted pair wire. The cable used
is made by the 3M Company as ribbon cable type. It has 20 twisted
pairs which are used for the twenty segments,

The beam width of the transducer used in this experiment
was calculated to be approximately 5.2 degrees at the operating
frequency of 325 KHZ beyond 1 meter and 5 cm wide at shorter
ranges.

The hydrophone used to obtain the acoustical data is an

encapsulated 1/8x1/8 inch ceramic cylinder resonant at about

380 KHZ. It was located approximately 1 meter away from the
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transducer so that a far field measurement of the transducer would
be valid. This distance was calculated to be 1/2 meter

from DZ/A, where D is the aperture size of the transducer and X is
the wavelength at the operating frequency of 325 KHZ.

The experiment was tested in a 2'x3'x4' polyethelene-lined
tank. Figure 4 shows the tank in which the system was tested.
Because of the limited dimensions of the test tank, the pulse
width for the signal was set short enough to isolate the

reflection from the boundaries.

3.1.2 Instrumentation System Design

Figure 5 is a block diagram of the instrumentation system
used in this thesis which consists of seven basic blocks:
transducer driver, transducer, hydrophone, hydrophone receiver,
analog to digital converter, system motor drive and data
acquisition system.

The system was designed to provide arbitrary phasing of
the individual segments. This was set by picking a minimum
quantization interval of 2n/16. To obtain this we multiplied

the carrier frequency by 16 on a frequency burst generator

(WAVETEK) to clock the sixteen stage shift register (74LS164). A
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divide by sixteen counter output (74LS163) was used as the input
to the shift register. This method provided sixteen phases

uniformly between zero and 2n. The first eight phases out of the

shift register were used as inputs to a pair of (8x10) mini-matrix
¥ selector switches and the last eight to another pair of (8x10)

i switches. These selector switches provided the selection of any

s of the sixteen phases to each of the 20 individual segments.

¢ Twenty double-pole single throw switches were used to select

between the first eight and the last eight phases. A variable
gain amplifier is used to amplify the signal that now must drive
the transducer segments. This variable gain amplifier allows the
amplitude to be adjusted on each individual segment to obtain any
desired drive amplitude shading across the transducer.

The hydrophone output was filtered to reduce the noise in

the channel and increase the signal to noise ratio for

measurements. A full wave rectifier and a low-pass filter was

o

& used to generate the envelope of the acoustic signal and then

b amplified by two stages of low noise and high bandwidth gain

4

! (HA4620-8) to drive the A/D converter input.

- Block five shows the analog to digital converter. This is
" a multiplexed A/D converter controlled over the IEEE-~488 bus
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Ll

(Connecticut Micro Computer). The A/D converter has sixteen

-
l. . l' l'

channels of analog input multiplexer which sequentially sample the

input data at a 110 microsecond sampling rate into an B bit packed

data stream. It also includes the time which was used both to

- trigger the WAVETEK and to reset the divide by sixteen counter and
y_.
hl shift register after the analog data was converted into digital

- data.

Block six is the system motor drive which is controlled by

the computer. This motor is a SLO-SYN motor with 72 steps per
revolution. In order to achieve higher resolution on the rotating

angle, a reducing gear was used. This motor was rotated

mechanically by using a two bit sequence that was controlied by
the software in the computer via its parallel printer port.
Block seven is the data acquisition system which is the
main processor in the experiment. This microcomputer (ACCESS)
uses its IEEE-488 port to control the WAVETEK parameters and to
control and receive data from the A/D converter. It also

generates the sequence needed to step the motor via the parallel

printer port. The data reduction was controlled in the software

and then stored on a 5 1/4 inch floppy disk (MAXWELL MD1). The

b
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divide by sixteen counter output (74L5163) was used as the input
to the shift register. This method provided sixteen phases
uniformly between zero and 2w, The first eight phases out of the
shift register were used as inputs to a pair of (8x10) mini-matrix
selector switches and the last eight to another pair of (8x10)
switches. These selector switches provided the selection of any
of the sixteen phases to each of the 20 individual segments.
Twenty double-pole single throw switches were used to select
between the first eight and the last eight phases. A variable

gain amplifier is used to amplify the signal that now must drive

the transducer segments. This variable gain amplifier allows the

5: amplitude to be adjusted on each individual segment to obtain any
!! desired drive amplitude shading across the transducer.

Lo

-, The hydrophone output was filtered to reduce the noise in

the channel and increase the signal to noise ratio for
measurements. A full wave rectifier and a low-pass filter was
used to generate the envelope of the acoustic signal and then

amplified by two stages of low noise and high bandwidth gain

(HA4620-8) to drive the A/D converter input.

<
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Block five shows the analog to digital converter. This is

a multiplexed A/D converter controlled over the IEEE-488 bus
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plot of the beam pattern was made on the integral dot-matrix
printer of the ACCESS by a software plotting package obtained from

Enercomp Company.

3.1.3 Phasing Scheme

Quantization of the phase was necessary in order to steer
the beam electrically. The required phases can be calculated for
four, three and two bit quantization and for different spacing
between the segments. The input drive to the system can be

written as:

V(1) = A cos(wt - ¢)
where A is the amplitude of the drive, w is the driving
frequency, T is the time, and ¢ is the phase. The phase which

must now be quantized can be written by setting V(t) equal to

zero; (i.e., ¢ = wt = Ker) where C_ is the speed of sound in

........................................
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water. Since the plate has been segmented, the total path can be

written as:
x(N) = C,T = CND sin®

where N is the segment number, D is the segment spacing. This

results in:
o(N) = INT{XNDSTn® Ly ygp |

where L is the quantization variable, which can be sixteen, eight,

or four depending on the quantization desired (4, 3 or 2 bits).
Figure 6 shows an example of four, three and two bit

quantization for 10° steering, one-half wavelength spacing.

Figure 7 shows an example of four bit quantization at 10° steering

for different spacing. For 1A and 2) spacing, the segments were

electrically tied together to form larger segments.

3.2 Experimental Analysis

In this part of the thesis the experimental dispersion

curve, grating lobe and mirror lobe will be discussed for both the

----------
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TABLE 1
QUANTIZATION OF PI/g
SEGMENT 4 BIT 3 BIT, 2 BIT
NUMBER |QUANTIZATION [QUANTIZATION |QUANTIZATION

1 | (@] (o)
2 2 2 (o]
3 Y Y Y
4 5 q q
5 6 /4 Y
6 8 % B
7 9 g g
8 " 10 €
9 1 12 12
10 13 12 1d
11 IS Iy 1
12 (o} o o)
13 2 2 (o)
14 3 o (@)
15 1 4 4
16 6 6 y
17 7 6 Y
18 9 g £
19 10 [e 8
20 15 {0 ]

QUANTIZATION SCHEME

Fig. 6

FIG.8

Quantization of n/8, four, three and two bit
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TABLE 2
QUANTIZATION OF pi/g
4 BIT
SEGMENT |[ONE-HALF ONE Two
NUMBER LAMBDA LAMBDA LAMBDA
- e L RTTITT
1 l. | 2 y
2 2 2 Y
3 y Y Y
4 5 4 Y
| 5 é l € s
6 i 8 | ¥ 3
5 7 l q 10 ]
: 8 , I i 10 ]
| 9 | 12 |2 (o]
i 10 13 12 ' o}
’ 11 | I5 o o
12 ! fo) o
13 ! 2 Q Y
; 14 3 d Y
? 15 Yy é y
e ¢ 6 4
{ 17 | 7 8 8
! 18 ' 9 ] 4 ?
! 19 10 T g
' 20 ; 15 10 i e

FIG.7

Fig. 7 Quantization of =/8, -12 A, A\, 2X spacing
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discrete and continuous types of transducers when applicable. The

effect of quantization on the beam pattern of the two transducers

will be evaluated. i

i

3.2.1 Dispersion Curve

The theoretical analysis that was derived in Chapter II
was evaluated for the parameters of the experimental continuous
segmented transducer, In order to obtain the dispersion curve
(i.e., change in velocity versus frequency), a set of phases
computed for a desired steering angle was set up on the segments
of the transducer. Then a sequence of beam patterns similar to
Figures 8 and 9 was generated to identify the frequency of maximum

response out of the transducer. The angle of the maximum response

was then measured and compared against the desired steering
angle. If the angles were matched then the frequency
corresponding to the maximum amplitude constitute a point on the
dispersion curve; if the angle was not matched, another frequency
was chosen, another set of phases computed, and another beam
pattern sequence was run., This iteration process was repeated as

necessary to obtain points on a dispersion curve.
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Figure 8 and 9 show the final beam pattern for a 5°
steering angle at one-half wavelength segment spacing. The
abscissa is the angle in degrees, the ordinate is the normalized
voltage in (db) and the third axis is the frequency in KHZ. As

the frequency is changed the amplitude will rise until it reaches

a maximum and then decays as the frequency increases. Figure 8 is
a right-hand view and Figure 9 is a left-hand view of the same
data.

In order to compare the theoretical disparsion curve
versus the experimental one, the data for the experimental
transducer was normalized to 325 KHZ so that the comparison could
be achieved. The normalized dispersion curve is plotted for the
continuous plate in Figure 10. The abscissa is the steering angle
in degrees and the ordinate is the frequency in KHZ. The points

obtained from measurements form a well-defined curve with very

little scatter. Although the experimental points are similar in

shape to the theory, the magnitude of dispersion effect of the

2
L
=

experimental curve is significantly less. The difference between
the experimental and theoretical curves could have been due to

limitations in the model. Water loading of the transducer,
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ignoring boundary impedance, and the assumption of an infinite

LAy )
5

plate are all factors that could influence the dispersion.

e
€ r
.

T

3.2.2 Grating Lobe

. In Chapter II it was shown theoretically that because of

the spatial filtering in the continuous plate the grating lobe in
a continuous plate was reduced considerably. For the discrete
segmented plate the grating lobe occurs when the spacing between

the segments is greater than one-half wavelength when the beam is

steered off normal; i.e.:
KD(sin® = sineo) = 2nw (n =1,2,...)
where K is the wavenumber, D is segment spacing, 6 is the physical

angle and % is the steering angle.

This results in:

RIDRAR - SO0 D SR
. Ak 1 RN
a‘-‘lll. LI ..‘. ‘..l ‘l . r LI I » . ‘




When the phase between the segments reaches 2w, the
pattern repeats itself, and this happens when we have some integer
multiple of spatial harmonic of the wavenumber. Both the
theoretical and experimental data for the discrete segmented plate
show such an effect. The theoretical and experimental data for
10° steering, 2X spacing, four bit quantization and uniform

shading is shown in Figures 11 and 12, respectively. The first P
grating lobe in both cases occurs at about -27°, as predicted by
the theory. The other two grating lobes can also be seen at about
+42° and -66° in Figures 11 and 12. The side-lobe structure of
both the theoretical and experimental pattern seem to match each
other rather well.

In the continuous plate, because of the spatial filtering,
the grating lobe was observed to be reduced considerably, as
predicted by the theory. The spatial filtering effect in the
continuous plate was measured and compared against the theoretical
data. To obtain the experimental spatial filtering curve, a
particular reference steering angle was selected and the operating
frequency was set at the corresponding resonant frequency. The
amplitude was then measured for different electrical drive

wavenumbers. The normalized experimental curve is plotted in

.........................................
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Figure 13 along with the theoretical spatial fiitering curve. The
theoretical spatial curve was truncated to unity to achieve a
normalization equivalent to measurement, This plot also includes
an adjusted wavenumber normalization which was a best match to the
experimental curve. The wavenumber adjustment necessary to match
this was approximately 10% This plot is for 10° steering. The
abscissa is the normalized wavenumber and the ordinate is the
normalized amplitude.

Figures 14 and 15 show the theoretical beam pattern for a
10° steering angle, 2X) spacing, and uniform shading, with no
spatial filtering and with spatial filtering, respectively, The
first grating lobe from the main beam has been reduced by 16 db.
The other two grating lobes are shown to have an improvement of
about 18 db. The experimental beam pattern for a continuous plate
with the same characteristics is shown in Figure 16. The first
grating lobe is down at approximately -23 db, which agrees well
with the theory. Although the other two grating lobes are shown
to also be reduced, the reductfon is about 15 db versus a

theoretical 20 db,
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3.2.3 Mirror Lobe

The reflection from the edge boundary of the continuous
plate that was discussed in Chapter 1 will cause a standing wave
to be formed. This results in a mirror lobe when the beam is
steered off normal. An active approach to suppression of the
mirror lobe was used and gave good results. Since the phase for
each segment could be set independently, it was possible to drive
the last three segments in the plate out of phase with the
original distribution. This acts to cancel the amplitude of the
wave by the time it reaches the edge boundary and in effect
reduced the mirror lobe significantly. The number of segments
used to reduce the mirror lobe was determined experimentally.

Figure 17 shows the 12° steered beam for a continuous
plate with one-half wavelength spacing between thesegments. The
mirror lobe can be seen to have a high level nearly comparable to
the main lobe at about =-12°., Figure 18 shows the same beam
pattern except the last three segments were driven out of phase.
The mirror lobe can be seen to be suppressed considerably. The
suppression is about 12 db. Figures 19 and 20 show the 3-D view
of the fifteen® beam for one-half wavelength spacing for the

right-hand view and the left-hand view, respectively. The figures

.....
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show how the mirror lobe moves as the frequency changes. This is

an indication of the frequency dependency of the mirror lobe in
the continuous plate.

An unexpected low level (-15 db or less) lobe in the
measurements of the beam pattern for the continuous plate was
observed at approximately -42°, This was probably generated
because of the shear modes in the plate which were weakly excited
by the electrical drive. With this shear mode there is an
associated shear velocity. By Snell's law the angle of the

radiated beam can be written as:

sind =

oln
w |E

where Cw is the speed of sound in the water and C; is the shear
velocity in the plate. In the continuous piezoceramic plate this
was given by CHANNEL INDUSTRIES to be 2250 meters/sec. Although
the location of the shear lobe was independent of both steering
angle and frequency, the amplitude of the radiated lobe had
dependency on both frequency and steering angle.

Figure 19 shows a right-hand view and Figure 20 shows a

left-hand view for a 15° steered beam and one-half wavelength
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spacing. The abscissa is the angle in degrees, the ordinate is

the normalized voltage in db and the third axis is the frequency

in KHZ. The effect of frequency can be seen to change the

w: 2 s & 4 /-,F_‘-'I- ry

amplitude of the shear lobe at -42° in the beam pattern of the

continuous plate. The effect of steering angle on the shear lobe

E is illustrated by Figure 21, which shows a right-hand view, and
Figure 22, which shows a left-hand view for a 0° beam. The

amplitude of the lobe is about -24 db for 0° steering versus the

-16 db for 15° steering.

3.2.4 CQuantization Effect on the Lobes

of the Discrete and Continuous Plate

The effect of four, three and two bit quantized driving

signals was investigated for the discrete and continuous plates.

[ Figure 23a, 23b and 23c shows a 10° steered beam for a

‘! discrete plate at 1/2) spacing, uniform shading for four, three

E and two bit quantization, respectively. Because of the finer

; phases of the 4 bit quantization, the side-lobe structure for this
i! quantization was best in comparison with the other two

- ] quantizations. This effect can be seen very well at -23°, where

E the side.lobe is about -20, -15, -14 db for the four, three and
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two bit, respectively. The first side-lobe of the main beam for
the four bit is -9.5 db versus the side-lobe of about -8.5 db and
-8 db for the three and two bit, respectively. The better
performance of the four bit quantization can also be seen at -50°
where the side-lobe is at -24 db versus the side-lobes of -20 db
and -16 db for the three and two bit cases, respectively. The
effect of quantization ranges (2-6 db) at -23° and (1-2 db) for
the first side-lobe.

Figure 24a, 24b and 24c shows a 5° steered beam
for 1/2) spacing in a continuous plate for four, three and two
bit, respectively. All side-lobes for the continuous plate are
lower than those of the discrete plate and the effect of phase
quantization is also smaller for the continuous plate. The first
side-lobe is about -15 db for all the quantizations. The four bit
has a side-lobe of about -19 db at a 28° angle. The three and two

bit shows the same side-lobe at about -14 db and -17 db,

respectively, which is not too much improvement at that particular
angle. But at -12° the side-lobe for the two bit is about -16 db
versus =24 db of the three bit quantization. This is rather a

good improvement in the side-lobe structure of a continuous plate.

S SERRTAE R g

AT

o TR ."s s a0 T THER TS




’

PR

o P
< .

PGS

111

rn
-
o
i .
bl )
o I
.
. Lis
i
3%

.

a

L

(V]

(e

LR

34

[V e

L'_‘_oLul_l: .

'.rur'lu:

FIVE

e

e
0ot DR

SpEa

e T R P ¥

Y

]

®
<
N
o
w

I
e s

T
-
]

4G.C

o

4.0

DEG |

SLE:

Y

o

Beam pattern, 1 A, 4 bit quantization, continuous plate

Fig. 24a

R AR LT LT TS N
JORTN -\..n\‘.‘..\.h\_;‘;.‘_“' N _'x:.'-




T T TR VT TR ET T — " \aE A
SRR A I N W it el A bl ind Al Sk el Sk Sl i i AN S AR VAN A
112
Y- -
- v . w
aon) ~ i yu)
% . s =
L] - a
" ra W w
z () 3
— g S
- 3
] u <
T P} (o] w—
I u > ©
(Xn) ._'-" S
wd [e]
w (8]
Ta-
X o "
gy a &
" 'LI..' = = 2
— e
pal o 1] L}J = :
EJ :__—l t h —— - — =z -
= e 5
- aoa T T =
r — -
N T e —— 3
— A - - 3
= — (
a2 e e
o perig — =0 )
g 78] — T = b gy —
U <
: X == U Y ”
o™ o <
o — 2 =
T .= —
% EE
& v £
e ' <
N | S
= +»
1t 3
[am ] =
[ ] [
. e
- Q
| oo foe)
L
. <t
ra ~N
(;.1 .
N - ] (=2}
\L y: T &
"ol RN - L] - ~ oo TN T C
A< ANRLE ..l_ < . 14 R JJ i l:l ¥ T l:l . |-' v ] tr -
P3N 0A 03] THRYOH




MR b

ST T S T LT A ]

113

.
i

,
i e

-d

>
[

<
~
o
w

1

[
l.l_'
L

e

T ot

o

~
iy e

T
z
¢

Y]

I'uzl ';' o
Loy '; -
L T X s e e e e e e .
SR R -
I = = el T &
g 0z e
P S JuA S e e e e
“r v — ———— _

g T T Tam— -

el G == o
ut ¢ o B ——
e B u D e e — n — )

v
1

-
d

c
<

1
1
i
—
o
e |

MGLE! DE

H
|

A

m
o
A

™
o

o

2
Beam pattern, ] A, 2 bit quantization, continuous plate

.0

-5

Ny

Fig. 24c

‘ [ da]
1
v | -". T ”‘"""“'_“_"_ T " "’""_' _""l‘—"“‘“' N H
5 LU DU DR ¥ oL CoofF-

»

: 0o pee o
RO rFTHLT0A O3Z T IHKEON

a3

-,
.

e T TN e e T T T T T TR

0y
y




114

The grating lobe in the discrete plate also shows a
dependency on the quantization. Figure 25a, 25> and 25c shows a
5° steered beam for 2) spacing for four, three and two bit, ]
respectively. The first grating lobe for four bit quantization is
about -14 db, The three and two bit also show that they have
grating lobes of about -12 db and -10 db, respectively, at about
-28° angle. The four bit quantization is shown to have a
considerably reduced grating lobe compared to the others.

For a continuous plate, the grating lobe was considerably
reduced because of the spatial filtering effect. The effect of
coarser quantization is also shown to be less than for the
discrete plate. Figure 26a, 26b and 26c shows a 5° steered beam
for 2\ spacing. The grating lobe is about -30, -24, -24 for four,
three and two bit, respectively.

For the continuous plate the mirror lobe was suppressed
more effectively with four bit quantization because of the finer
phase adjustment that was available to drive the last three
segments for cancellation. Figure 27a, 27b and 27c shows a 10°
steering for 1) spacing, uniform shading for four, three and two
bit quantization, respectively. The four bit quantization effect
on the mirror lobe is about -22 db versus the -20 and -19.5 db for

the three and two bit, respectively,
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4.0 Conclusion

The purpose of this thesis was the study of the radiating
properties of a segmented continuous piezoelectric plate
transducer in comparison with a discrete segmented plate.
Continuous plates have been shown to have both advantages and
disadvantages. The major advantages of the continuous plates are
the spatial filtering effect and ease of fabrication. The
disadvantages are spurious shear lobes and mirror lobes, and a
narrow operating frequency bandwidth.

The spatial filtering effect of the continuous plate had a
very noticeable impact on the grating lobes. This effect was
evaluated both theoretically and experimentally. The theoretical
analysis was carried out by computing the response of the plate in

wavenumber space and using that response as a weighting function

on the wavenumber spectrum of the impressed driving voltage.
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Experimental measurements confirmed the theoretical predictions.
The first grating lobe for the continuous plate was down to -29 db

compared to -4 db for the discrete plate.
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The spatial filtering effect of the continuous

piezoelectric plate transducer served to smooth the side-lobe
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structure significantly. The side-lobe performance of the
continuous plate was lower than that of the discrete plate. The
first side lobe for the continuous plate was down -12 db compared
to -8 db for the discrete plate.

The spatial spectrum of quantized drive for different
phasing was also investigated for four, three and two bit. The
four bit quantization gave the best performance compared to the
two bit quantization for both continuous and discrete plate. The
first side lobe for the four bit quantization in a continuous
plate was down =12 db compared to -10 db for the two bit
quantization for 2\ spacing and 10° steering, a degradation of
2 db due to quantization. The first side lobe for the four bit
quantization of the discrete plate was down -9 db compared to
-3 db of the two bit quantization for 2X spacing and 10° steering,
showing a greater degradation of 6 db.

In the continuous plate the mirror and shear lobes were
shown in Chapter II to be of major concern. The mirror lobe was
generated by the reflection of the travelling wave from the edge
boundary which created a standing wave. The mirror lobe was
experimentally cancelled by actively driving the last three

segments out of phase, which reduced the mirror lobe by about
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18 db. Shear lobes were experimentally observed to be at
approximately 42°, These were symmetrical shear waves which were
weakly coupled to the electrical drive.

A suggestion which could be made here is to passively
suppress both the mirror lobe and shear lobe by using a proper
damping at the edges of the continuous plate to eliminate a
standing shear wave or normal mode which might be generated in the
continuous plate.

A very important physical advantage of the continuous

plate over the discrete plate may be in the ease of fabrication,
especially for high frequencies. At high frequencies,

wavelengths are small and fabrication of a multi-element array is
difficult, particularly for imaging sonars working in the
megahertz region with apertures on the order of 100 wavelengths.

For narrow scanning apertures the conducting electrode of the

- — o
Rraa ARG AR . AN

continuous plate can be cut at rather large spacing (greater than
1/2 wavelength) without worrying about the grating lobes, since

they will be reduced by the spatial filtering effect of the

T TEmT VYV T

continuous plate. The necessity of dicing the fragile ceramic
plate may also be circumvented by merely using individual

electrodes created by silk screening the electrode, pattern

VISV Y v v T

initially or created by etching a continuous electrode surface.
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